

# STATE OF ART ON STEEL – TIMBER – (CONCRETE) STRUCTURES

E.

Technical Working Group 11.6 Steel Timber Hybrid Structures

Nº 145 | **2024** 

ECCS TC11 WG 6 Interim Report of ECCS TC11/WG6: Steel-Timber Hybrid Structures

# State of art on Steel-Timber-(Concrete) Structures

1<sup>st</sup> Edition, 2024

Alfredo Romero Teodora Bogdan Christoph Odenbreit Giacomo Iovane Beatrice Faggiano Katherine Cashell Dan Bompa Ricardo Pimentel Stephen Hicks Alper Turgut Jose Gouveia Henriques Jean-Francois Demonceau Noah Böhm Achim Vogelsberg Jie Yang Aku Aspila Kristo Mela Valentino Vigneri Andreas Taras Cristiano Loss Rohola Rahnavard Helder Craveiro Ana Espinós Capilla Manuel Romero Carlos del Castillo Daniel Viorel Ungureanu Jose Humberto Matias de Paula



#### State of art on Steel-Timber-(Concrete) Structures

#### Nº145, 1st Edition, 2024

#### Published by:

ECCS – European Convention for Constructional Steelwork publications@steelconstruct.com www.steelconstruct.com

All rights reserved. No parts of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner

ECCS assumes no liability regarding the use for any application of the material and information contained in this publication.

Copyright © 2024 ECCS – European Convention for Constructional Steelwork

ISBN: 978-92-9147-199-7

| •  | •  | • • | ٠ | • • | • | • | ٠ | • • | • • | ٠ | • | • • | •  | • | • | * | •  | • • | • | ٠ | * | * | •  | •  | • • | • • | • | *  | ٠ | • | * | • • | • | • | • | • | ٠ | •  | • | • • | *  | •  | ٠  | * | •  | • |   |    | • |
|----|----|-----|---|-----|---|---|---|-----|-----|---|---|-----|----|---|---|---|----|-----|---|---|---|---|----|----|-----|-----|---|----|---|---|---|-----|---|---|---|---|---|----|---|-----|----|----|----|---|----|---|---|----|---|
| ta | at | e   | ( | of  | , | Ą | r | t   | 0   | n | ; | S   | te | е | e | ŀ | ٦. | Γi  | n | n | b | e | er | ·_ | (   | С   | ; | DI | n | С | r | e   | t | e | ) | ç | S | tr | ί | 10  | ct | ίι | ır | e | 23 | S | i | ii |   |

PREFACE

### PREFACE

This document intends to provide guidance on the available research in the open literature related to steel timber composite structural elements.

The document starts with an overview of the wood classification and strength classes of sawn timber as well as their mechanical properties and behaviour. In addition, a description of some engineered timber products is included together with relevant properties. A comprehensive state of art is provided furthermore in order to identify the main lacks and is divided into 9 distinct items: timber material and products; shear connections; beam-column joints; beams and slabs; columns, walls diaphragms and bracings; fire design and sustainability. The last chapter contains the main conclusions of the extensive state-of-the-art and provides guidance for future research topics.

The content of this document is expected to be a high value to future research topics when dealing with steel timber composite and hybrid actions. The information present in the Items will be a basis for the future design guidelines and background document for the next generation of design guide for steel timber composite and hybrid structural elements.

This document has been prepared within the framework of activities of TC11/WG6. The members of TC11/WG6 are listed below:

| <ul> <li>A. Romero</li> <li>A. Ahmad</li> <li>T. Bogdan</li> <li>C. Odenbreit</li> <li>G. Iovane</li> <li>B. Faggiano</li> <li>R. Landolfo</li> <li>K. Cashell</li> <li>D. Bompa</li> <li>R. Pimentel</li> </ul> | Luxembourg<br>Luxembourg<br>Luxembourg<br>Luxembourg<br>Italy<br>Italy<br>Italy<br>United Kingdom<br>United Kingdom<br>United Kingdom | R. Obiala<br>J.H. Matias de Paula<br>A. Aspila<br>K. Mela<br>V. Vigneri<br>A. Taras<br>C. Loss<br>R. Rahnavard<br>H. Craveiro<br>A. Espinós Capilla | Luxembourg<br>Luxembourg<br>Finland<br>Finland<br>Switzerland<br>Switzerland<br>Canada<br>Portugal<br>Portugal<br>Spain |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| A. Turgut<br>J. G. Henriques<br>JF. Demonceau                                                                                                                                                                    | Belgium<br>Belgium<br>Belgium                                                                                                         | C. del Castillo<br>A.Ciutina                                                                                                                        | Belgium<br>Romania<br>Romania                                                                                           |
| N. Böhm<br>A. Vogelsberg<br>B. Kuehn<br>J. Yang                                                                                                                                                                  | Belgium<br>Germany<br>Germany<br>Germany<br>Luxembourg                                                                                | D.V. Ungureanu<br>Schänzlin Jörg<br>D. Doran<br>M. Knobloch<br>L. Buchholz                                                                          | Germany<br>United Kingdom<br>Germany<br>Germany                                                                         |
|                                                                                                                                                                                                                  |                                                                                                                                       |                                                                                                                                                     |                                                                                                                         |

| iv   State of Art on Steel-Timber-(Concrete) Structures |
|---------------------------------------------------------|
| PREFACE                                                 |

| U. Kuhlmann  | Germany |
|--------------|---------|
| P. O. Martin | France  |
| B. Bouvier   | France  |
| L. Corti     | Italy   |
| G. Muciaccia | Italy   |
| L. WWendner  | Belgium |
|              |         |

State of Art on Steel-Timber-(Concrete) Structures | v SYMBOLOGY

### SYMBOLOGY

#### Abbreviations

STC – Steel-timber composite SCT – Steel concrete composite CLT – Cross laminated timber LVL – Laminated veneer lumber PSL - Parallel strand lumber LSL – Laminated strand lumber OSB - Oriented strand board RBS – Reduced beam section T-BRB – Timber buckling-restrained brace STC – Steel-timber composite RL – Radial-longitudinal  $\sigma$  – Stress  $\mathcal{E}$  – Strain kmod – Reduction coefficient k<sub>def</sub> – Deflection coefficient Glulam – Glued laminated timber GL<sub>xxh</sub> – Homogeneous glulam GL<sub>xxc</sub> – Composite glulam f<sub>m,g,k</sub> – Bending strength ft,0,g,k – Tension strength ft,90,g,k – Tension strength  $f_{c,0,g,k}$  – Compression strength f<sub>c,90,g,k</sub> – Compression strength  $f_{v,q,k}$  – Shear strength E<sub>0,g,mean</sub> – Modulus of elasticity E<sub>0,q,05</sub> – Modulus of elasticity E<sub>90,g,mean</sub> – Modulus of elasticity Gg,mean - Shear modulus  $\rho_{g,k}$  – Density fm.x.k – Bending strength fm,y,k – Bending strength  $f_{t,0,x,k}$  – Tension strength ft,0,y,k - Tension strength ft.90,x,k – Perpendicular tension strength  $f_{t,90,v,k}$  – Perpendicular tension strength  $f_{c,0,x,k}$  – Compression strength  $f_{c,0,y,k}$  – Compression strength

f<sub>c,90,z,k</sub> – Perpendicular compression strength fv,090,xlav,k – Longitudinal shear strength fv,090,ylay,k – Longitudinal shear strength fv,9090,xlay,k - Rolling shear strength f<sub>v,9090,ylay,k</sub> – Rolling shear strength E<sub>0,x,mean</sub> – Mean value of modulus of elasticity E<sub>90,x,mean</sub> – Mean value of modulus of elasticity E<sub>0,y,mean</sub> – Mean value of modulus of elasticity E<sub>90.v.mean</sub> – Mean value of modulus of elasticitv  $E_{0,x,05}$  – Fifth percentile value of modulus of elasticity  $E_{0,v,05}$  – Fifth percentile value of modulus of elasticity G<sub>090,xlay,mean</sub> – Mean value of modulus of shear G090,ylay,mean – Mean value of modulus of shear G<sub>9090,xlay,mean</sub> - Mean value of modulus of rolling shear G9090,ylay,mean - Mean value of modulus of rolling shear Oxlam k – Characteristic value ρ<sub>xlam,mean</sub> – Mean value GLVL – Glued laminated veneer lumber PU – Phenol formaldehyde MUF – Melamine formaldehyde PRF – Phenol resorcinol formaldehyde  $f_{m,0,edge,k}$  – Bending strength parallel to grain edgewise  $f_{m,0,flat,k}$  – Bending strength parallel to grain flatwise

vi | State of Art on Steel-Timber-(Concrete) Structures

SYMBOLOGY

s – Bending strength size effect parameter  $f_{t,0,k}$  – Tension strength parallel to grain ft.90.edge.k – Tension strength perpendicular to grain edgewise f<sub>c,0,k</sub> – Compression strength parallel to grain for service f<sub>c,90,edge,k</sub> – Compression strength perpendicular to grain edgewise f<sub>c,90,flat,k</sub> – Compression strength perpendicular to grain flatwise f<sub>c,90,flat,k,pine</sub> – Compression strength perpendicular to grain flatwise pine  $f_{v,0,edge,k}$  – Shear strength parallel to grain edgewise  $f_{v,0,flat,k}$  – Shear strength parallel to grain flatwise E<sub>0,mean</sub><sup>e</sup> – Modulus of elasticity parallel to arain  $E_{0,k}^{f}$  – Modulus of elasticity parallel to grain E<sub>c,90,edge,mean</sub><sup>g</sup> – Modulus of elasticity parallel to grain edgewise  $E_{c,90,edge,k}^{h}$  – Modulus of elasticity parallel to grain edgewise G<sub>0,edge,mean</sub> – Shear modulus parallel to grain edgewise G<sub>0,edge,k</sub> – Shear modulus parallel to grain edgewise G<sub>0,flat,mean</sub> – Shear modulus parallel to grain flatwise G<sub>0,flat,k</sub> – Shear modulus parallel to grain flatwise  $\rho_{mean}$  – Density mean value  $\rho_k$  – Density characteristic value fm,90,flat,k – Bending strength perpendicular to grain flatwise

 $f_{v,90,flat,k}$  – Shear strength perpendicular to grain flatwise E<sub>c,90,edge,mean</sub><sup>f</sup> – Modulus of elasticity perpendicular to grain edgewise  $E_{c.90,edge,k}^{k}$  – Modulus of elasticity perpendicular to grain edgewise E<sub>m,90,flat,mean</sub> – Modulus of elasticity perpendicular to grain flatwise E<sub>m,90,flat,k</sub> – Modulus of elasticity perpendicular to grain flatwise G<sub>90,flat,mean</sub> – Shear modulus perpendicular to grain flatwise G<sub>90,flat,k</sub> – Shear modulus perpendicular to grain flatwise I/d – Length to diameter ration d<sub>s</sub> – Fastener diameter t<sub>s</sub> – Flange thickness FE – Finite element **BCGP** – Cementitious grout L<sub>s</sub> – Shank length fy – Steel yield strength G/T – Grout strength to timber strength ratio W – Width of the pocket HSFG bolts – High strength friction grip bolts SCT – Shear connection type Psc – Peak load Pst – Peak load δ<sub>sc</sub> – Small slip δ<sub>ST</sub> – Significant slip AISC – American Institution of Steel Construction EWP – Engineered wood product M<sub>u</sub> – Ultimate bending moment S<sub>j,ini</sub> – Initial rotational stiffness  $\theta_{\rm u}$  – Rotation capacity M – Bending moment  $\theta$  – Joint rotation UMAT – User-defined material  $\mu$  – Friction coefficient M<sub>i,r</sub> – Bending moment resistance

.....

State of Art on Steel-Timber-(Concrete) Structures | vii

SYMBOLOGY

F<sub>i</sub> – Component row z – Level arm Ft – Maximum loading capacity F<sub>b(i)</sub> – Shear force  $\Delta$  – Deviation parameter FEM – Finite element model CDM – Continuum damage model k<sub>i</sub> – Initial stiffness kp – Hardening stiffness M<sub>o</sub> – Reference bending moment M<sub>i,v</sub> – Yield bending moment SHS - Square hollow section SVD-AUKF – Singular value decomposition into an adaptive unscented kalman filter MRF - Moment resisting frame LVDT – Linear variable displacement transducer  $M-\theta$  – Bending moment rotation CR – Capacity ratio CR-S<sub>ini</sub> – Initial stiffness CR-Fy – Yielding strength CR-D – Ductility P<sub>Y</sub> – Yielding of link P<sub>P</sub> – Plasticization of link P<sub>c</sub> – Link ultimate strength M<sub>i.Rd</sub> – Bending resistance OS<sub>i</sub> – Overstrength M<sub>I,pl,Rd</sub> – Bending design resistance STS – Self-tapping screws SCC – Self-compacting concrete CFS steel - Cold formed steel LTB – Lateral torsional buckling SPF – Spruce-pine-fir Prefa-SeTi – Steel-timber composite beam FNR – National research fund ULS – Ultimate limit state SLS – Serviceability limit state WQ beam - Welded box steel slimfloor beam

FRP – Fibre plastic polymers CHS – Cylindrical hollow sections CFRP – Carbon fibre reinforced polymer RHS – Rectangular hollow steel PLW – Peak load to weight ratio TFST – Timber-filled steel tubular MoE – Modulus of elasticity CFST – Concrete-filled steel tubular TFGT – Timber filled pultruded GFRP tube GFRP – Fiber-reinforced polymer L-STC – L-shaped steel-timber column PU – Polyurethane FFTT – Finding the forest through the trees EVD – Equivalent viscous damping SMRF – Steel moment-resisting frame DDBD – Direct displacement-based design RSM – Response surface method ANN – Artificial neural network MISD – Maximum inter-story drift RISD – Residual inter-story drift GP – Gaussian process ACMR – Adjusted collapse margin ratio SC-RW – Self-centring rocking wall RSF – Resilient slip friction SMF – Steel moment frame IO – Immediate occupancy CP – Collapse prevention IDA – Incremental dynamic analysis PT – Post-tensioned GWB - Gypsum-based wallboard RCf – Reinforced concrete floor CLTf - CLT floor CFD – Computational fluid dynamics FDS – Fire dynamics simulator

viii | State of Art on Steel-Timber-(Concrete) Structures

SYMBOLOGY

SB – Swage beam NBCC - National building code of Canada DBE – Design based earthquake MCE – Maximum considered earthquake ADAS – Additional damping and stiffness GIR – Glued-in rod UFP – U-shaped flexural plate V-CBF – V-configuration concentric bracing frame X-CBF – X-configuration concentric bracing frame D-CBF – Diagonal-configuration concentric bracing frame EBF – Eccentric bracing frame DCM - Dissipative structural behaviour DLS – Damage limitation state LS – Life safety CM – Collapse mechanism SGLRS – Separated gravity and lateral resisting system SPSW – Steel plate shear wall NGA – Next generation attenuation CDF– Cumulative distribution function 9D - 9-story structure with deformable connection 9R – 9-story structure with rigid connection HT-BRBF – Heavy timber bucklingrestrained braced frame  $\beta$  – Damping value T – Building period A – Floor acceleration f<sub>0</sub> – Frequency MPP – Mass plywood panel CA - Casing interface

CO – Core steel CC - Core-casing interface  $\eta$  – Constraint ratio If – Fastener spacing I<sub>f,end</sub> – Fastener spacing FEA – Finite element analysis HRR – Heat release rate  $\beta_n$  –Notional charring rate MUF – Melamine-urea-formaldehyde ITI – Department of structural design and timber engineering AST – Adiabatic surface temperature LCA – Life cycle assessment GWP – Global warming potential GHG – Greenhouse gases CO<sub>2</sub>eq. – Carbon equivalence MCI – Material circularity indicator PCI - Product circularity indicator BCI – Building circularity indicator SCI – System circularity indicator DfDR – Design for disassembly and reuse BF – Blast furnace BOF – Blast oxygen furnace EAF – Electric arc furnace ECF – Embodied carbon factors EPD – Environmental product declaration C1 – Considered product C2 – End-of-life destination C3 - Reuse, recovery or recycling C4 – Disposal DfD - Design for disassembly and deconstruction ISO – International Organization for Standardization CTBUH – Council of Tall Buildings and Urban Habitat 2D – Two-dimensional

State of Art on Steel-Timber-(Concrete) Structures | ix SYMBOLOGY

3D – Three-dimensional PEF – Product environmental footprint CPR – Construction products regulation LEED – Leadership in energy and environmental design BREEAM – Building research establishment environmental assessment method DGNB – Deutsche Gesellschaft für Nachhaltiges Bauen – German Society for Sustainable Building FSC – Forest stewardship council

State of Art on Steel-Timber-(Concrete) Structures | xi CONTENTS

## CONTENTS

| PREFAC  | CE                              |                                                                        | iii |  |  |  |  |  |
|---------|---------------------------------|------------------------------------------------------------------------|-----|--|--|--|--|--|
| SYMBO   | LOGY                            |                                                                        | v   |  |  |  |  |  |
| INTROD  | UCTION                          |                                                                        | 1   |  |  |  |  |  |
| TERMIN  | IOLOGY                          |                                                                        | 4   |  |  |  |  |  |
| 1. TIMB | 1. TIMBER MATERIAL AND PRODUCTS |                                                                        |     |  |  |  |  |  |
| 1.1     | General                         | features of wood                                                       | 5   |  |  |  |  |  |
| 1.2     | Softwoo                         | d                                                                      | 6   |  |  |  |  |  |
| 1.3     | Hardwoo                         | bd                                                                     | 7   |  |  |  |  |  |
| 1.4     | Mechani                         | cal properties of timber and moisture effects                          | 8   |  |  |  |  |  |
| 1.5     | Enginee                         | red timber                                                             | 15  |  |  |  |  |  |
|         | 1.5.1                           | General aspects                                                        | 15  |  |  |  |  |  |
|         | 1.5.2                           | Glued laminated timber (Glulam)                                        | 16  |  |  |  |  |  |
|         | 1.5.3                           | Cross laminated timber (CLT)                                           | 18  |  |  |  |  |  |
|         | 1.5.4                           | Laminated veneer lumber (LVL)                                          | 19  |  |  |  |  |  |
| 1.6     | Other er                        | ngineered timber-based products                                        | 23  |  |  |  |  |  |
| 1.7     | Conclus                         | ions                                                                   | 24  |  |  |  |  |  |
| 2. SHEA |                                 | CTIONS                                                                 | 25  |  |  |  |  |  |
| 2.1     | Introduc                        | tion                                                                   | 25  |  |  |  |  |  |
| 2.2     | Literatur                       | e review on push-out tests and numerical studies                       | 26  |  |  |  |  |  |
| 2.3     | Shear co                        | onnection solutions applicable to steel-timber                         | 51  |  |  |  |  |  |
| 2.4     | Behavio                         | ur of steel-timber shear connectors                                    | 54  |  |  |  |  |  |
| 2.5     | Shear co                        | onnection for steel-timber-concrete beams                              | 57  |  |  |  |  |  |
| 3. BEAN |                                 | JOINTS                                                                 | 59  |  |  |  |  |  |
| 3.1     | Introduc                        | tion                                                                   | 59  |  |  |  |  |  |
| 3.2     | Steel-tim                       | nber composite beam-to-column joints                                   | 59  |  |  |  |  |  |
|         | 3.2.1                           | CLT Slab continuity with cover steel plates                            | 59  |  |  |  |  |  |
|         | 3.2.2                           | CLT slab continuity with cover wood plates or half-<br>lap connections | 71  |  |  |  |  |  |
|         | 3.2.3                           | CLT slab continuity with embedded steel rods                           | 76  |  |  |  |  |  |
|         | 3.2.4                           | CLT slab continuity with glued butt joint                              | 85  |  |  |  |  |  |
| 3.3     | Timber b                        | peam-to-steel column joints                                            | 88  |  |  |  |  |  |

| xii   State of Art on Steel-Timber-(Concrete) Structures |  |
|----------------------------------------------------------|--|
| CONTENTS                                                 |  |

|      |      | 3.3.1       | Joint with top and seat steel angle brackets                                                   | 88  |
|------|------|-------------|------------------------------------------------------------------------------------------------|-----|
|      |      | 3.3.2       | Joint with T-stub pre-welded to the steel column                                               | 00  |
|      |      |             | and slotted vertically into the timber beam                                                    | 96  |
|      |      | 3.3.3       | Joint with steel box-shaped bracket                                                            | 101 |
|      | 3.4  |             | am-to-timber column joints                                                                     | 107 |
|      |      | 3.4.1       | Timber beam-to-steel/timber column joint with steel links                                      | 107 |
|      |      | 3.4.2       | Timber beam-to-column joint with steel reduced beam section (RBS) element                      | 114 |
|      |      | 3.4.3       | Timber beam-to-column joint with intermediate connected steel panel box and pre-stressed steel | 117 |
|      |      | 3.4.4       | Timber beam-to-column joints with steel braces                                                 | 120 |
|      | 3.5  | Conclusio   | ns                                                                                             | 122 |
| 4. B | EAMS | AND SLA     | BS                                                                                             | 125 |
|      | 4.1  | Introductio | on                                                                                             | 125 |
|      | 4.2  | Steel bear  | ms with timber slabs                                                                           | 127 |
|      |      | 4.2.1       | Literature review                                                                              | 127 |
|      |      | 4.2.2       | Ongoing available research                                                                     | 137 |
|      | 4.3  | Timber be   | am with thin-walled steel                                                                      | 142 |
|      | 4.4  | Conclusio   | ns                                                                                             | 144 |
| 5. C | OLUM | NS          |                                                                                                | 147 |
|      | 5.1  | Introductio | on                                                                                             | 147 |
|      | 5.2  | Timber-fill | ed steel columns                                                                               | 147 |
|      | 5.3  | Timber-en   | cased steel columns                                                                            | 153 |
|      | 5.4  | Conclusio   | ns and recommendations                                                                         | 157 |
| 6. W | ALLS | , DIAPHRA   | GMS AND BRACES                                                                                 | 159 |
|      | 6.1  | Introductio | on                                                                                             | 159 |
|      | 6.2  | Steel-timb  | er composite shear walls                                                                       | 159 |
|      |      | 6.2.1       | Steel frames with mass timber wall                                                             | 159 |
|      |      | 6.2.2       | Steel frames with lightweight timber walls                                                     | 167 |
|      |      | 6.2.3       | Cold formed steel diaphragms with bracing wood-based panels                                    | 177 |
|      | 6.3  | Steel-timb  | er hybrid and composite floor diaphragms                                                       | 180 |
|      |      | 6.3.1       | Steel frame with mass timber diaphragms                                                        | 180 |

State of Art on Steel-Timber-(Concrete) Structures | xiii CONTENTS

|      |        | 6.3.2      | Steel frames with lightweight timber diaphragm                             | 188 |
|------|--------|------------|----------------------------------------------------------------------------|-----|
|      | 6.4    | Steel-timb | er hybrid framed systems                                                   | 193 |
|      |        | 6.4.1      | Hybrid frames with steel columns and timber                                |     |
|      |        |            | beams, slabs and walls                                                     | 193 |
|      |        | 6.4.2      | Timber frames with steel members and joint elements                        | 195 |
|      | 6.5    | Timber bu  | ickling-restrained brace (T-BRB)                                           | 206 |
|      | 6.6    | Conclusio  | ns                                                                         | 215 |
| 7. F | IRE DI | ESIGN      |                                                                            | 217 |
|      | 7.1    | Character  | ization of timber at elevated temperature                                  | 217 |
|      |        | 7.1.1      | General                                                                    | 217 |
|      |        | 7.1.2      | European fire classification systems                                       | 218 |
|      |        | 7.1.3      | Reaction to fire characteristics following a<br>performance-based approach | 220 |
|      |        | 7.1.4      | Material properties at elevated temperature                                | 220 |
|      |        | 7.1.5      | Charring                                                                   | 225 |
|      | 7.2    | Character  | ization of steel at elevated temperature                                   | 228 |
|      |        | 7.2.1      | Thermal properties of steel                                                | 228 |
|      |        | 7.2.2      | Mechanical properties of steel                                             | 229 |
|      | 7.3    | Steel-timb | er structural elements and joints in fire                                  | 230 |
|      |        | 7.3.1      | General                                                                    | 230 |
|      |        | 7.3.2      | Timber as passive fire protection material                                 | 232 |
|      |        | 7.3.3      | Steel-timber beams and flooring systems                                    | 236 |
|      |        | 7.3.4      | Steel-timber joints                                                        | 240 |
|      |        | 7.3.5      | Steel-timber columns and bracing members                                   | 244 |
|      | 7.4    | Performar  | nce-based design of steel-timber structural solutions                      | 247 |
|      | 7.5    | Conclusio  | ns                                                                         | 253 |
| 8. 5 | SUSTA  | INABILITY  |                                                                            | 255 |
|      | 8.1    | Environme  | ental impact                                                               | 255 |
|      |        | 8.1.1      | Life cycle assessments                                                     | 255 |
|      |        | 8.1.2      | Circular principles in building design                                     | 257 |
|      | 8.2    | Material e | fficiency                                                                  | 259 |
|      |        | 8.2.1      | Steel                                                                      | 260 |
|      |        | 8.2.2      | Timber                                                                     | 264 |

| xiv   State of Art on Steel-Timber-(Concrete) Structures |
|----------------------------------------------------------|
| CONTENTS                                                 |

|                    |                                                     | 8.2.3     | Embodied carbon of steel-timber floors                                        | 267 |  |  |  |  |
|--------------------|-----------------------------------------------------|-----------|-------------------------------------------------------------------------------|-----|--|--|--|--|
|                    | 8.3                                                 | Design fo | r disassembly and deconstruction and future reuse                             | 270 |  |  |  |  |
|                    |                                                     | 8.3.1     | Embodied carbon of steel-timber floors                                        | 270 |  |  |  |  |
|                    |                                                     | 8.3.2     | Principles, indicators and guidelines for design for deconstruction and reuse | 274 |  |  |  |  |
|                    |                                                     | 8.3.3     | Hybrid constructions                                                          | 276 |  |  |  |  |
|                    |                                                     | 8.3.4     | Component level hybridization                                                 | 279 |  |  |  |  |
|                    | 8.4                                                 | Regulatio | ns and certifications                                                         | 280 |  |  |  |  |
|                    | 8.5                                                 | Conclusio | ons                                                                           | 284 |  |  |  |  |
|                    | 9. FUTURE RESEARCH AND RECOMMENDATIONS / PATHWAY TO |           |                                                                               |     |  |  |  |  |
| FUTURE EUROCODES 2 |                                                     |           |                                                                               |     |  |  |  |  |
| REFERENCES 29      |                                                     |           |                                                                               |     |  |  |  |  |

| State of Art on Steel-Timber-(Concrete) Struc |        |
|-----------------------------------------------|--------|
| INTROD                                        | UCTION |
|                                               |        |

#### INTRODUCTION

Innovations in timber engineering and constructions, improvements in numerical analysis, structural capability evaluation and experimental tests on timber structural systems and nodal assemblages all around the world have contributed to a rising interest in hybrid steel-timber braced structures. In fact, they are characterized by the intelligent and more efficient use of the two materials to improve the global and local behaviour of all-timber or all-steel structures The benefits of this structural type also involve the design of optimized seismic structures, where lightness of timber is combined with the stiffness and ductility of steel. Nowadays, research into hybrid steel-timber braced structures is still very recent and fairly limited.

Timber is a natural and organic construction material with several attributes. It can be used in hybrid and composite construction with steel and/or concrete and it is a fully renewable and largely recyclable material. Because it is a naturally grown material, timber is a complex building material. Its properties are highly variable and are sensitive to environmental and loading conditions. It is highly anisotropic with high strength and stiffness parallel to the grain but low properties perpendicular to the grain. These factors must be taken into account in the design of timber structures.

Aside from sawn timber, wood is also processed into structurally optimized building materials known as engineered timber. The benefits of these wood composites manufactured from laminated timbers, timber particles, adhesives and other materials, include increased dimensional stability, more homogeneous mechanical properties, and greater durability.

The state-of-the-art findings in this document will serve for future guidance in research topics to help finalize a design guideline for structures having steel timber composite/hybrid structures. These recommendations are summarized in the last chapter and are intended to outline future research subjects and give technical knowledge so that a comprehensive design code for Steel-Timber Composite Structures can be developed. The recommendations are separated into the following subchapters:

<u>ITEM 1 Timber Materials and Products</u> presents an overview of the wood classification, and strength classes of sawn timber as well as their mechanical properties and behaviour. In addition, a description of some engineered timber products is included together with relevant properties.

<u>ITEM 2 Shear Connections</u> is focused on push-out tests with monotonic and cyclic loads and their numerical or analytical analyses. A summary of possible shear connection solutions applicable to steel-timber composite beams is provided, where

| 2   State of Art on Steel-Timber-(Concrete) Structures |
|--------------------------------------------------------|
| INTRODUCTION                                           |

key advantages and disadvantages are highlighted. The behaviour of steel-timber shear connectors is also assessed, where current state-of-the-art limitations are debated. In addition, a brief review of steel-timber-concrete floors and the shear connection solutions applicable to such floors is also included.

<u>ITEM 3 Beam Column Joints</u> is focused on connections that are using mainly screws, bolts and a combination of these using epoxy glue. However, there are other custom connections which include threaded rods welded to steel beams, bolts in grout pockets, among others.

<u>ITEM 4 Beams and Slabs</u> presents an overview of steel-timber flooring systems shear connections with different types of screws and bolts. Analytical models have been developed to reproduce the behaviour of the connections tested.

<u>ITEM 5 Columns</u> contains a summary of different studies on stub/slender steeltimber cross-sections obtained by combining the materials, timber-filled steel profiles or steel profiles embedded in timber represent the most popular configurations investigated in the last decade. Two main groups of steel-timber composite columns were experimentally and numerically investigated in the last years, namely timberinfilled and timber-encased steel columns. Although significant knowledge contributions have been made to the field of steel-timber composite columns, extensive studies are yet necessary to ensure a comprehensive understanding of their load-bearing behaviour and to support the development of reliable analytical tools for predicting their behaviour in real applications.

<u>ITEM 6 Walls, Diaphragms and Braces</u> presents an overview of the existing research on Steel-Timber Composite (STC) shear walls and diaphragms, on steel-timber hybrid framed systems and Timber Buckling-Restrained Braces (T-BRB). In particular, the results of the experimental and numerical analysis are presented and discussed in terms of the main structural performance, highlighting the innovations of the systems studied.

<u>ITEM 7 Fire design</u> aims to present an overview of the behaviour of wood products and steel at elevated temperatures, including the relevant thermal and mechanical properties as a function of the temperature. The most relevant investigations and findings on the behaviour of steel-timber structures or structural elements in fire will be presented and discussed, identifying whenever possible existing gaps in knowledge and new research paths. Both prescriptive and performance-based approaches will be considered and discussed.

<u>ITEM 8 Sustainability</u> presents the effect of using different structural systems based on using various materials and their Impact to the CO2 emissions. Circularity and as well sustainability principles are explained in this chapter. several case studies are provided to offer to the reader a better understanding on the Impact of composite steel timber systems.

| State of Art on Steel-Timber- | (Concrete) Structures   3 |
|-------------------------------|---------------------------|
|                               | INTRODUCTION              |

The American Institute of Steel Construction (AISC) has launched the first design guide containing the first-ever set of recommendations for hybrid steel frames with mass timber floors [2]. However, it is not for steel timber composite structures, but for hybrid steel timber buildings. The design guide provides a context for the new building typology, detailing strategies from the perspective of multiple disciplines. By facilitating this new generation of sustainable buildings, the guide will help accelerate the use of hybrid timber and steel in multi-story residential and commercial construction. Multidisciplinary aspects like structural design, fire safety, acoustic, and sustainability specialists, provide a holistic overview of the design considerations that impact hybrid structures; it demonstrates how safety, structural strength, vibration, and acoustical control can be achieved with this typology by following a holistic design approach.

Lessons learned upon already built steel timber projects, [1] can be resumed as follows:

- Connections & material interfaces are critical (careful coordination during design & shop drawings; differences in tolerances; differences in material movements vertically and horizontally).
- Handle with care (timber is exposed, finish surface; moisture impacts, staining, rust; steel may have a primer or fire coating).
- Logistics are key (ideal to have same installer for timber and steel; delivery & install sequencing keep tight schedules, may need additional material storage on site; don't slow down one material's install speed due to the nature of the other).

| 4   State of Art on Steel-Timber-(Concrete) Structures |
|--------------------------------------------------------|
| TERMINOLOGY                                            |

#### **TERMINOLOGY**

In structural engineering, a system with two or more materials can be called a hybrid. Composite is an action between materials that changes the way that each structural element behaves individually.

Based on the level of interaction and how the load capacity is evaluated, hybrid structures can be either additive or composite systems. Table 0.1 exemplifies these concepts on structural beam elements.

|                               | HYBRID STRUCTURES                |                                                                            |
|-------------------------------|----------------------------------|----------------------------------------------------------------------------|
|                               | COMPOSITE                        | ADDITIVE                                                                   |
|                               | η = 1                            | 2 parts, each working ion its                                              |
| Beam<br>structural<br>element |                                  | own                                                                        |
|                               |                                  | η = 0                                                                      |
|                               |                                  | (at least not considered in the structural design calculation)             |
|                               | $η \le 1, η \ge 0, η \ge min η$  |                                                                            |
|                               |                                  |                                                                            |
| Interaction                   | Act commonly $> \sum$ of parts   | Act independently                                                          |
| mode                          |                                  | Act in a chain one after another                                           |
| Load<br>bearing<br>capacity   | Bigger than the sum of the parts | The load bearing capacity of the weakest element alone or the sum of parts |

Table 0.1: Beam structural element – composite /additive and hybrid concept