Publications
Publication Details
Title
Behaviour of cylindrically curved steel panels under in-plane stresses
Authors
- João Pedro Martins
Abstract
The objective of this work is to analyse the stability behaviour of cylindrically curved steel panels under generalised in-‐‑plane compressive stresses and to develop design rules which overcome some limitations of current European Standards.
For the simplest case of pure compressive axial stresses, the most relevant works have been revisited and analysed. In what concerns the elastic critical stress of cylindrically curved panels, it was concluded that the expressions which are currently available return non-‐‑negligible errors. Relying on the fi-‐‑ nite element method and, at the same time, on an analytical formulation based on energy methods, new expressions presenting significant improvements and allowing obtaining the elastic critical stress also for panels under non-‐‑uniform in-‐‑plane loading are presented. Concerning the ultimate re-‐‑ sistance, the proposed method also shows improvements, but its main contri-‐‑ bution is that it allows obtaining the ultimate resistance also for panels under pure in-plane bending and a direct application to cross-‐‑sections.
Finally, it is worth mentioning that, albeit it is not proposed any new method to compute the ultimate load of cylindrically curved panels under biaxial loading, the behaviour of curved panels under this type of loading is analysed relying exclusively on numerical methods.
References
ABS. (2004) Guide for buckling and ultimate strength assessment for offshore structures. American Bureau of Shipping.
Amabili, M. (2008) Nonlinear Vibrations and Stability of Shells and Plates. New York, Cambridge University Press.
Amani, M., Edlund, B. L. O., Alinia, M. M. (2011) Buckling and postbuckling behavior of unstiffened slender curved plates under uniform shear. Thin-‐‑Walled Structures, 49 (8), 1017–1031.
Batdorf, S. B. (1947a) A simplified Method of Elastic Stability Analysis for Thin Cylindrical Shells. National Aeronautics and Space Administration. Technical Report number: 847.
Batdorf, S. B. (1947b) A simplified method of elastic-‐‑stability analysis for thin cylindrical shells I – Donnell’s Equation. National Aeronautics and Space Administration. Technical Report number: 1341.
Batdorf, S. B. (1947c) A simplified method of elastic-‐‑stability analysis for thin cylindrical shells II – Modified Equilibrium Equation. National Aeronautics and Space Administration. Technical Report number: 1342.
Backer, E. H., Kovalevsky, L., Rish, F. L. (1972), Structural analysis of shells. Malabar, Florida, Robert E. Krieger Publishing Company.
Becker, H. & Colao, A. (1977) Compressive strength of ship hull girders. Part III -‐‑ Theory and additional experiments. Ship Structure Committee. Technical Report: 267.
Becker, H., Goldman, R. and Prozerycki, J. (1970) Compressive strength of ship hull girders. Part I -‐‑ Unstiffened Plates. Ship Structure Committee. Technical Report: 217.
Beg, D., Kuhlmann, U., Davaine, L., Braun, B. (2010) Design of plated structures. Mem Martins, ECCS.
Bijlaard, P. P. (1957) Buckling of Plates under Nonhomogeneous Stress. Ameri-‐‑ can Society of Civil Engineers, Journal of the Engineering Mechanics Division, 83 (EM3), Proc. paper 1293.
Bleich, F. (1952) Buckling Strength of Metal Structures. New York, McGraw-‐‑Hill. Braun, B. (2010) Stability of steel plates under combined loading. PhD Thesis. Insti-‐‑
tut für Konstruktion und Entwurf der Universität Stuttgart.
Brush, D. O. & Almroth, B. O. (1975) Buckling of Bars, plates and Shells. New York, MacGraw-‐‑Hill.
BSI. (2000) BS5400-‐‑3. Steel, concrete and composite bridges: code of practice for design of steel bridges. London, British Standards Institution.
Budiansky, B. & Hutchinson, J. W. (1964) Dynamic Buckling of Imperfection Sensitive Structures. In: Proceedings of the 11th IUTAM Congress, Munich, Germany. pp. 636-‐‑651.
Calladine, R. C. (1983) Theory of Shell Structures. Cambridge, Cambridge University Press.
CEN. (2002) EN1990:2002. Basis of structural design. Brussels, European Committee for Standardization.
CEN. (2004) EN 10025-‐‑2. Hot rolled products of structural steels -‐‑ Part 2: Technical delivery conditions for non-‐‑alloy structural steels. Brussels, European Committee for Standardization.
CEN. (2005) EN1993-‐‑1-‐‑1. Design of steel structures: General Rules and Rules for Buildings. Brussels, European Committee for Standardisation.
CEN. (2006a) EN1993-‐‑1-‐‑5. Design of steel structures: Plated Structural Elements. Brussels, European Committee for Standardisation.
CEN. (2006b) EN1993-‐‑1-‐‑3. Design of steel structures: Supplementary rules or cold-‐‑formed members and sheeting. Brussels, European Committee for Standardisation.
CEN. (2007) EN 1993-‐‑1-‐‑6. Design of steel structures: Strength and Stability Shells Structures. Brussels, European Committee for Standardisation.
CEN. (2008), EN 1090-‐‑2. Execution of steel and aluminium structures, Part 2: Technical requirements for steel structures. Brussels, European Committee for Standardization.
Chajes, A. (1974) Principles of Structural Stability Theory. New Jersey, Prentice-‐‑Hall.
Chung, J. S., Hong, S. W., Prinsenberg, S., Nagata, S. (eds.) (2008) The Proceedings of The Eighteenth International Offshore and Polar Enginnering Conference, 6-‐‑11 July, 2008, Vancouver, Canada, ISOPE.
Chung, J. S., Hong, S. W., Prinsenberg, S., Nagata, S. (eds.) (2009) The Proceedings of The Ninteenth International Offshore and Polar Enginnering Conference, 21-‐‑26 June, 2009,Osaka, Japan, ISOPE.
Clarin, M. (2007) Plate Buckling Resistance – Patch Loading of Longitudinally Stiff-‐‑ ened Webs and Local Buckling. PhD Thesis. Luleå tekniska universitet.
Correia (2009) Ponte pedonal Pedro e Inês, Coimbra, Portugal. [Online] Available from http:// upload.wikimedia.org/ wikipedia/ commons/0/00/ PontePedroInes.jpg [Accessed: 7th June 2014].
Cox, H. & Clenshaw, W. (1941) Compression tests on curved plates of thin sheet duralumin. HM Stationary Office.
Crate, H. & Levin, L. R. (1943) Data on buckling strength of curved sheet in compression. National Advisory Committee for Aeronautics. Technical Report number: L-‐‑557.
Crisfield, M. A. (1997) Nonlinear Finite Element Analysis of Solids and Structures. Vols. 1 & 2. London, John Wiley & Sons.
CTICM. (2007) EBPlate (version 2.01). Available from: www.cticm.com.
Cui, W., Wang, T. and Pedersen, P. T. (2002) Strength of ship plates under combined loading. Marine Structures, 15(1), 75–97.
Davaine, L. & Tran, K. (2010) Study of the resistance and the stability of cylindrical steel panels. Application to engineering structure [Presentation]. Cottbus, ECCS – TWG 8.3: 10th official meeting, 29th April.
Dias da Silva, V. (2006) Mechanics and Strength of Materials. Berlin, Springer-‐‑ Verlag.
Dier, A.F. & Dowling, P. S. (1980) Plates under combined loading and lateral compression. Department of Civil Engineering, Imperial College, London. Technical report: CESLIC Report SP8.
DNV. (1977) Rules for the Design, Construction and Inspection of Offshore Structures. Appendix C -‐‑ Steel Structures. Det Norske Veritas.
DNV. (2010a) DNV-‐‑RP-‐‑C201. Buckling strength of plated structures. Det Norske Veritas.
DNV. (2010b) DNV-‐‑RP-‐‑C202. Buckling strength of shells. Det Norske Veritas.
Domb, M. M. & Leigh, B. R. (2001) Refined design curves for compressive buckling of curved panels using nonlinear finite element analysis. In: 42nd AIAA / ASME / AHS / ASC Structures, Structural Dynamics and Materials Conference, Seattle, U.S.A. Paper 1348.
Domb, M. M. & Leigh, B. R. (2002) Refined curves for shear buckling of curved panels using nonlinear finite element analysis. In: 43rd AIAA / ASME / AHS / ASC Structures, Structural Dynamics and Materials Conference, Den-‐‑ ver, U.S.A, Paper #2002-‐‑1257.
Domb, M. M. (2002) Nonlinear buckling predictions of curved panels under combined compression and shear loading. In: 23rd Congress of International Council of the Aeronautical Sciences, ICAS2002, Toronto, Canada, pp. 322.1 – 322.8.
Donnell, L. H. & Wan C. C. (1945) Effect of imperfections on buckling of thin cylinders and columns under axial compression. Journal of Applied Mechanics of the American Society of Mechanical Engineers (ASME), 17, 73-‐‑83.
Donnell, L. H. (1934) A new theory for the buckling of thin cylinders under axial compression and bending. Transactions of the American Society of Mechanical Engineers (ASME), 56, 795.
Dubas, P. & Gehri, E. (eds.) (1986) Structural Stability, Behaviour and Design of steel Plated Structures. (Eds.). Zurich, European Convention for Constructional Steelwork (ECCS), Publication number: 44.
Eipakchi, H. R. & Shariati, M. (2011) Buckling analysis of a cylindrical panel under axial stress using perturbation technique. Journal of Applied Mathematics and Mechanics, 91 (2), 138-‐‑145.
Ertürk, A. (2014) Chicago, Cloud Gate portrait. [Online] Available from http://alierturk.deviantart.com/ art/ Chicago-‐‑Cloud-‐‑Gate-‐‑portrait-‐‑ 203059089 [Acessed: 14th March 2014].
Faulkner, D., Adamschak, J. C., Snyder, G. J. and Vetter, M. F. (1973) Synthesis of welded grillages to withstand compression and normal loads. Computers & Structures, 3, 221-‐‑246.
Featherston, C. A. & Ruiz, C. (1998) Buckling of curved panels under com-‐‑ bined shear and compression. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 212 (3), 183-‐‑ 196.
Featherston, C. A. (2000) The use of finite element analysis in the examination of instability in flat plates and curved panels under compression and shear. International Journal of Non-‐‑Linear Mechanics, 35 (3), 515-‐‑529.
Featherston, C. A. (2003) Imperfection sensitivity of curved panels under combined compression and shear. International Journal of Non-‐‑Linear Me-‐‑ chanics, 38, 225-‐‑238.
Featherston, C. A. (2012) Geometric imperfection sensitivity of curved panels under combined compression and in-‐‑plane bending – A study using adaptive meshing and DIC. Strain, 48, 286-‐‑295.
Foreign Office Architects (2009) Birmingham New St. Station as viewed from Ste-‐‑ phenson St., Birmingham New St. Station Project presentation.
Frey, F. & Jirousek, J. (2001) Analyse des structures et milieux continus – Méthode des éléments finis. Trait de Génie Civil, vol. 6. Lausanne, Presses Poly-‐‑ techniques et Universitaires Romandes.
Fricke, W. & Bronsart, R. (eds.) (2012) Proceedings of the 18th International Ship and Offshore Structures Congress (ISSC), 10-‐‑13 September, 2012, Rostock, Germany, University of Rostock.
Frieze, P. A. & Shenoi, R. A. (eds.) (2006) Proceedings of the 16th International Ship and Offshore Structures Congress (ISSC), 20-‐‑25 August, 2006, Southampton, United Kingdom, University of Southampton Press.
Galéa, Y. & Martin, P. -‐‑O. (2010) Longitudinally stiffened plates in Eurocode 3: Calculation of the global critical buckling stress. Journal of Constructional Steel Research, 66, 1345–1353.
Gardner, L. & Ministro, A. (2004) Testing and numerical modelling of structural steel oval hollow sections. Imperial College. Research report number: 04-‐‑002-‐‑ST.
Gerard, G. & Becker, H. (1957) Handbook of Structural Stability: Part III – Buckling of Curved Plates and Shells. National Advisory Committee for Aeronautics. Technical Report number: 3783.
Gerard, G. (1957) Handbook of Structural Stability: Part IV – Failure of plates and composite elements. National Advisory Committee for Aeronautics. Technical Report number: 3784.
Gerard, G. (1959) Handbook of Structural Stability: Supplement to Part III – Buck-‐‑ ling of Curved Plates and Shells. National Aeronautics and Space Administration. Technical Report number: D-‐‑163.
Girish, J. & Ramachandra, L. S. (2008) Stability and vibration of composite cylindrical shell panels under axial compression and secondary loads, Journal of Applied Mechanics (ASME), 75, 041007-‐‑1-‐‑11.
GL. (2007) Rules for Classification and Construction, IV – Industrial Services, Part 6: Principles for Structural Design. Hamburg, Germanischer Lloyd Ak-‐‑ tiengesellschaft.
Guedes Soares, C. & Gordo, J. M. (1996) Compressive strength of rectanghular plates under biaxial load and lateral pressure. Thin-‐‑Walled Structures, 24, 231-‐‑259.
Hilburger, M. W., Nemeth, M. P. and Starnes, J. H. (2001) Nonlinear and buck-‐‑ ling behavior of curved panels subjected to combined loads, In: 42nd AIAA / ASME / AHS / ASC Structures, Structural Dynamics and Materials Conference, Seattle, U.S.A. Paper 1398.
Jacques, T. H., Maquoi, R., Fonder, G (1983) Buckling of unstiffened compression curved plates, Journal of Constructional Steel Research, 3 (1), 28-‐‑34.
Jang, C. D. & Hong, S. Y. (eds.) (2009) Proceedings of the 17th International Ship and Offshore Structures Congress (ISSC), 16-‐‑21 August, 2009, Seoul, Republic of Korea, National University.
Janjic, D. (2008) Experience from the Global Analysis of Stonecutter’s Bridge and Sutong Bridge. In: 25th Annual International Bridge Conference, 2-‐‑4 June, Pittsburgh, Pennsylvania, USA, Curran Associates, Inc., pp. 207-‐‑ 277.
Jetteur, P. and Maquoi, R. (1984) Larguer effective d’une tôle courbe comprimée, Construction Métallique, 2, 51-‐‑57.
Johansson, B., Maquoi, R., Sedlacek, G., Müller, C., Beg, D. (eds.) (2007) Com-‐‑ mentary and worked examples to EN1993-‐‑1-‐‑5 “Plated Structural Elements”. JRC Scientific and Technical Reports. EUR 22898 EN – 2007.
Klöppel, E. & Möller, K. (1968) Beulwerte ausgesteifter Rechteckplatten (Band II). Berlin, Ernst and Sohn.
Klöppel, E. & Sheer, J. (1960) Beulwerte ausgesteifter Rechteckplatten (Band I). Berlin, Ernst & Sohn.
Koiter, W. T. (1945) Over de Stabiliteit van het Elastische Evenwicht. Ph.D. Thesis. Delft University (Trans. National Aeronautics and Space Agency Tech-‐‑ nical. Translation Number: TT F 10833).
Koiter, W. T. (1956) Buckling and post-‐‑buckling behaviour of a cylindrical panel under axial compression. Reports and Transactions National Aeronautical Research Institute, 20, 71-‐‑84.
Koiter, W. T. (1960) A consistent first approximation in general theory of thin elastic shells. In: The Theory of Thin Elastic Shells. Amsterdam, North-‐‑Holland. pp. 12-‐‑33.
Koiter, W. T. (1967) General Equations of Elastic Stability for Thin Shells. In:
Proceedings of the Symposium on Theory of Shells to Honour L. Hamilton Donnell, Houston, University of Houston. pp. 187-‐‑223.
Leissa, A. W. (1973) Vibration of Shells. National Aeronautics and Space Administration. Monograph number: SP-‐‑288.
Libai, A. & Simmonds, J. G. (1988) The Nonlinear Shell Theory. 2nd ed. New York, Cambridge University Press.
Lopez, T. (2007) Zubizuri Bridge. [Online] Available from: http://littleaesthete.com/top-‐‑5-‐‑bilbao [Accessed: 25th June 2013].
Marguerre, K. (1937) Apparent width of the plate in compression. Luftfahrt Forschung, 14 (3), 121–128. Trans. National Advisory Committee for Aer-‐‑ onautics. Technical Memorandum number: 833.
Martins, J. P., Simões da Silva, L. e Reis, A. (2011) Efeito da geometria na resis-‐‑ tência de painéis curvos em aço. In: VIII Congresso de Construção Metálica e Mista, Guimarães, Portugal. pp. 365-‐‑362.
Martins, J. P., Simões da Silva, L., Reis, A. (2013) Eigenvalue analysis of cylin-‐‑ drically curved under compressive stresses – extension of rules from EN1993-‐‑1-‐‑5. Thin-‐‑Walled Structures, 68, 183–194.
Martins, J. P., Simões da Silva, L., Reis, A. (2014) Ultimate load of cylindrically curved panels under in-‐‑plane compression and bending – Extension of rules from EN1993-‐‑1-‐‑5. Thin-‐‑Walled Structures, 77, 36–4.
Möcker, T. & Reimerdes, H.-‐‑G. (2006) Postbuckling simulation of curved stiffened composite panels by the use of strip elements. Composite Structures, 73, 237-‐‑243.
Moen, C. & Schafer, B. (2004) Direct Strength Design for Cold-‐‑Formed Steel Members With Perforations. The John Hopkins University, Progress Report to AISI members number: 1.
Moin, P. (2010) Fundamentals of engineering numerical analysis. 2nd ed. New York, Cambridge University Press.
Nakai, H. & Yoo, C. H. (1988) Analysis and design of curved steel bridges. New York, McGraw-‐‑Hill.
National Aeronautics and Space Administration (n.d.) Space Shuttle Program: Spanning 30 Years of Discovery [Online]. Available from: http://www.nasa.gov/mission_pages/shuttle/main/index.html [Accessed on: 19th May 2014].
Nemeth, M. P. & Starnes Jr., J. H. (1998) The NASA Monographs on Shell Stability Design Recommendations – A Review and Suggested Improvements. National Space Agency. Report number: TP-‐‑1998-‐‑206290.
Novozhilov, V. V. (1959) Theory of Thin Elastic Shells. Groningen, Noordhoff.
Pardo, A. & Fernandez, J. C. (2010) The quest for lighter and stronger aircraft with realistic simulation. JEC Magazine. [Online] Available from: http://www.jeccomposites.com /news/ composites-‐‑news/ quest-‐‑ lighter-‐‑ and-‐‑ stronger-‐‑ aircraft-‐‑ realistic-‐‑ simulation [Accessed: 12th March 2014].
Park, J.S., Fujikubo, M., Iijima, K., Yao, T. (2009) Prediction of the secondary buckling strength and ultimate strength of cylindrically curved plate under axial compression. In: Proceedings of the 19th International Offshore and Polar Engineering Conference, The International Society of Offshore and Polar Engineers (ISOPE), Osaka, Japan. pp. 740–747.
Pircher, M. (2004) The influence of a weld-‐‑induced axi-‐‑symmetric imperfection on the buckling of a medium-‐‑length silo under wind loading. International Journal of Solids and Structures, 41, 5595–5610.
Pircher, M., & Bridge, R. (2001) The influence of circumferential weld-‐‑induced imperfections on the buckling of silos and tanks. Journal of Constructional Steel Research, 57, 569–580.
Pope G. G. (1965) On the axial compression of long, slightly curved panel. British Aeronautical Research Council, Ministry of Aviation, Reports and Memoranda Number: 3392.
Reddy, J. N. (2007) Theory and Analysis of Elastic Plates and Shells. 2nd ed. Boca Raton, CRC Press.
Reddy, J.N. (2002) Energy Principles and Variational Methods in Applied Mechanics. 2nd ed. New York, John Wiley & Sons.
Redshaw, S. C. (1934). The Elastic Instability of a Thin Curved Panel Subjected to an Axial Thrust, Its Axial and Circumferential Edges Being Simply Supported. British Aeronautical Research Committee. Report and Memorandum number: 1565.
Reis, A. & Camotim, D. (2012) Estabilidade e Dimensionamento de Estruturas. Amadora, Edições Orion.
Ribeiro, F. (2008) Ponte Pedonal Chaves. [Online] Available from: http://www.flickr.com / photos / fer-‐‑ribeiro / 3097186412 [Accessed: 25th June 2013].
Rotter, J. M. & Schimdt, H. (eds.) (2008) Buckling of shells, European Design recommendations, 5th edition. Brussels, European Convention for Constructional Steelwork (ECCS), Publication number: 128.
Rotter, J. M. (2004) Buckling of cylindrical shells under axial compression. In: Teng, J. G. & Rotter, J. M. (eds.) Buckling of Thin Metal Shells. London, Spon, pp. 42-‐‑87.
Rusch, A. & Lindner, J. (2001) Tragfähigkeit von beulgefährdeten Querschnitts-‐‑ elementen unter Berücksichtigung von Imperfektionen. Stahlbau, 70 (10), 765-‐‑774.
Samuelson, L. A. & Eggwertz, S. (eds.) (1992) Shell Stability Handbook. London, Elsevier.
Schenk, C. A. & Schüeller, G. I. (2003) Buckling analysis of cylindrical shells with random geometric imperfections. International Journal of Non-‐‑Linear Mechanics, 38, 1119 – 1132.
Schmidt, H. (2000) Stability of steel shell structures – General Report. Journal of Constructional Steel Research, 55, 159-‐‑181.
Schuette, E. (1948) Buckling of curved sheet in compression and its relation to the secant modulus. Journal of the Aeronautical Sciences, 15 (1), 18-‐‑22.
Seide, P. & Stein, M. (1949) Compressive Buckling of Simply supported of Plates with Longitudinal Stiffeners. National Advisory Committee for Aeronautics. Technical Note number: 1825.
Sekine H. & Tamate O. (1969) Postbuckling behavior of thin curved panels under axial compression. Bulletin of Japan Society of Mechanical Engineering, 12 (51), 415-‐‑420.
Silva Gomes, J. F. (2007) Análise de Tensões em Placas, Casca e Reservatórios. Porto, Edições INEGI.
Simões da Silva, L. & Gervásio, H. (2007) Manual de Dimensionamento de Estruturas Metálicas: Métodos Avançados. Coimbra, CMM.
Simões da Silva, L. (1988) Modal Interactions in bending and buckling of sandwich
structures. PhD thesis. Imperial College London.
Simulia (2011) ABAQUS FEA (version 6.11) [Software] Simulia Dassault Sys-‐‑
tèmes.
Song, C. Y., Teng, J. G., Rotter, J. M. (2004). Imperfection sensitivity of thin elastic cy-‐‑lindrical shells subject to partial axial compression. International Journal of Solids and Structures, 41, 7155–7180.
Stonor, R.W.P., Bradfield, C.D., Moxham, K. E. and J.B. Dwight, K. E. (1983) Tests on plates under biaxial compression. Cambridge University Engineering Department. Technical report: CUED/D-‐‑STRUCT/TR.98.
Stowell, E. Z. (1943) Critical compressive stress for a curved sheet supported along all edges and elastically restrained against rotation along the unloaded edges. National Advisory Committee for Aeronautics. War Report number: L-‐‑691.
Tauchert, T. R. (1974) Energy Principles in Structural Mechanics. Tokyo, McGraw-‐‑Hill.
Teng, J. G. & Hong, G. (1998) Nonlinear thin shell theories for numerical buckling predictions. Thin-‐‑Walled Structures, 31, 89–115.
Teng, J. G. & Rotter, J. M. (eds.) (2004) Buckling of thin metal shells. London, Spon Press.
Teng, J. G. & Song, C. Y. (2001) Numerical models for nonlinear analysis of elastic shells with eigenmode-affine imperfections. International Journal of Solids and Structures, 38, 3263-‐‑3280.
Thompson, J. M. T. & Hunt, G. W. (1984) Elastic instability phenomena. London, Wiley.
Timoshenko, S. P. & Gere, J. M. (1961) Theory of Elastic Stability. 2nd Ed. New York, Dover Publications.
Tran, K. (2012) Étude de la résistance et de la stabilité des tôles courbes en acier.
Application aux ouvrages d’art. PhD thesis. Université Paris-‐‑Est.
Tran, K. L., Douthe, C., Sab, K., Dallot, J., Davaine, L. (2014) A preliminary design formula for the strength of stiffened curved panels by design of experiment method. Thin-‐‑Walled Structures, 79, 129–137.
Tran, K., Davaine, L., Douthe, C., Sab, K. (2012) Stability of curved panels under uniform axial compression. Journal of Constructional Steel Research, 69, 30–8.
Ugural, A. C. (1981) Stresses in plates and Shells. New York, McGraw-‐‑Hill.
Unknown author (1885) New Street Station in Victorian Times, before redevelopment in the 1960'ʹs. [Online] Available from http:// www.historycultures.bham.ac.uk/ undergrad/ image/ NewStreetStation.jpg [Acessed: 4th March 2014].
Unknown author (1897) Diagrid Shell by Vladimir Shukhov during construction, Russia. [Online] Available from http://upload.wikimedia.org/ wikipedia/commons/a/a4/ Double_curvature_steel_lattice_Shell_by_Shukhov_in_Vyksa_1897_shell .jpg [Accessed: 4th March 2014].
Unknown author (2007) New Sheppy Bridge. [Online] Available from: http:// www.flickr.com/ photos/ its-‐‑only-‐‑lines/ 346981731 [Accessed: 25th June 2013].
Unknown author (2010) SPAR platform under constructrion. [Online] Available from: http://www.ogj.com/articles/shell/perdido/2010/04/building-‐‑the-‐‑ worlds-‐‑deepest-‐‑drilling-‐‑and-‐‑production-‐‑platform.html [Acessed: 16th May 2014].
Unknown Author (2014) Arch Bridge (Bellows Falls) [Online]. Available from http:// en.wikipedia.org [Accessed 7th March 2014].
Usami, T. (1993) Effective width of locally buckled plates in compression and
bending. Journal of Structural Engineering, 119 (5), 1358-‐‑1373.
Valsgard, S. (1979) Ultimate capacity of plates in biaxial inplane compression. Det
Norske Veritas. Technical Report: 76-‐‑678.
Valsgard, S. (1980) Numerical design prediction of the capacity of plates in in-‐‑ plane compression. Computers & Structures, 12, 729-‐‑739.
Vejrum, T. (2008) Danish Engineers behind the behind World'ʹs largest Cable Stayed Bridges: Sutong and Stonecutters Bridge [Presentation] Oslo, Norsk Ståldag 2008, 29th October.
Veljkovic, M. & Johansson, B. (2001) Design for Buckling of Plates due to Direct Stress. In: Proceedings of Nordic Steel Construction Conference, Helsinki, Finland. pp. 729-‐‑736.
Veljkovic, M. & Johansson, B. (2009) Review of plate buckling rules in EN1993-‐‑ 1-‐‑5. Steel Construction, 2 (4), 228-‐‑234.
Ventsel, E. & Krauthammer, T. (2001) Thin Plates and Shells: Theory, Analysis and Applications. New York, Taylor & Francis.
Vlasov, V. Z. (1949) General Theories of Shells and its Applications in Engineering. Trans. National Advisory Committee for Aeronautics. Technical Translation number: 99.
Volmir, A. S. (1963) Stability of elastic systems. Fizmatig, Moscow. Trans. National Aeronautics and Space Administration. Technical Memorandum number: AD628508.
von Kármán T. H. & Tsien H. S. (1941) The buckling of thin cylindrical shells under axial compression. Journal of the Aeronautical Sciences, 8 (8), 303-‐‑ 312.
von Kármán, T., Sechler, E. E., Donnell, L. H. (1932) Strength of Thin Plates in Compression. Transaction of the American Society of Mechanical Engineers, 54, 53-‐‑57.
Welter, G. (1946) The effect of the radius of curvature and preliminary artificial eccentricities on buckling loads of curved thin aluminium-‐‑alloy sheets for monocoque constructions. Journal of the Aeronautical Sciences, 13 (11), 593-‐‑596.
Winter, G. (1947) Strength of Thin Steel Compression Flanges. Transactions of American Society of Civil Engineers, 112, 527-‐‑554.
Wolfram (2010) Mathematica (version 8.0) [Software] Wolfram Research, Inc. Yamaki, N., (1984) Elastic stability of circular cylindrical shells. Amsterdam,
North-‐‑Holland.
Yao, T., Brunner, E., Cho, S. R., Choo, Y. S., Czujko, J., Estefen, S, F., Gordo, J. M., Hess, P. E., Naar, H., Pu, Y., Rigo, P., Wan, Z. Q. (2006) Ultimate Strength (Committee III.1), 16th International Ship and Offshore Structures Congress (ISSC), Southampton, United Kingdom.
Young, H. D. & Freedman, R. A. (1999) Sears and Zemansky'ʹs University Physics. 10th ed. Reading, Addison-‐‑Wesley.
Ziemian, R. D. (ed.) (2010) Guide to stability design of metal structures. 6th ed. New Jersey, John Wiley & Sons.
Zingoni, A. (1997) Shell Structures in Civil and Mechanical Engineering: Theory and Closed Form Analytical Solutions. London, Thomas Telford.
Files
No files available...
<< back