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INTRODUCTION 
Shell-like structures are very well known to be very prone to stability problems and, also very 
sensitive to initial imperfections which lower non-negligibly their ultimate strength. On one hand, 
cylindrically curved panels may be seen as a subgroup of shell structures and therefore share the 
disadvantages of such structural solution. On the other hand, cylindrically curved panels may be 
seen as curved plates. The reality lies somewhere between these two limits.  
Since curved panels are neither flat nor full revolution shells, rules and guidelines for estimating 
equivalent geometric imperfections are inexistent. This problem becomes more serious when 
preliminary results have shown a high sensitivity to initial geometric imperfections.  
In the framework of Eurocodes, rules defining how to proceed to model geometric imperfections 
when using numerical tools (e.g. when using the finite element method) are given by EN1993-1-5 
and EN1993-1-6. However, cylindrically curved panels fall outside the scope of these standards.  
This paper focus on fully nonlinear numerical analysis of cylindrically curved panels with different 
patterns for the geometric imperfections, all based on several eigenmode shapes. 

1 ON THE DEFINITION OF GEOMETRIC IMPERFECTIONS 
1.1 Brief literature review 
Early attempts to calculate the ultimate strength of plated and shell-like structures assumed an 
imperfection free geometry. Gradually, and based on experimental results, this assumption was 
dropped and it became evident the necessity of introducing initial imperfections. Among the studies 
that have considered an imperfect geometry are those of von Karman et al. [1], von Karman & 
Tsien [2], Koiter [3] and Budiansky & Hutchinson [4]. The last two are, in fact, considered to be the 
works proving that initial geometric imperfections are indeed the main reason for the poor 
correlation between theoretical and experimental results. Although these works were a turning point 
on the awareness of the importance of initial geometric imperfections, they assumed a constant 
pattern during the application of the load [5].  
Nowadays it is possible to consider the variability of the imperfections shape during the analysis. 
This possibility came with the evolution of computer capacity allowing the use of advance 
numerical applications where the imperfect geometry is modelled and fully nonlinear analyses 
(GMNIA) are carried out.  
According to the ECCS manual on design recommendations for shells [5], there are three 
conceptual approaches to define the initial geometric imperfections: realistic patterns, worst pattern 
and stimulating patterns.  

1.2 European standards 
As already mentioned, rules for defining equivalent geometric imperfections can be found in 
European standards.  
For plated structures, imperfections are dealt in Annex C of EN1993-1-5 [6]. One possible approach 
(equivalent geometric imperfections) states that the imperfection shape may be defined following a 
relevant eigenmode shape or shapes defined in Figure C.1 with amplitudes given in Table C.2. In 
the case of unstiffened plates or sub-panels the amplitude proposed is 
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where Δw0,eq,EN1993-1-5 is the maximum amplitude for the equivalent geometric imperfection, 
a is the length of the plate (or sub-panel), 
b is the width of the plate (or sub-panel).  

For shells of revolution, recommendations to model equivalent geometric imperfections are given in 
section 8.7 of EN1993-1-6 [7]. The amplitude of the equivalent geometric imperfections is given by 
the following expression 

( )nngENeq tUUlw 25;max611993,,0 =∆ −−   (2) 

where Δw0,eq,EN1993-1-6 is the maximum amplitude for the equivalent geometric imperfection, 
lg is the relevant gauge length according to clause 8.4.4(2), 
Un is the dimple imperfection amplitude parameter depending on the 

fabrication tolerance quality class,  
t is the shell’s thickness.   

In conclusion, since cylindrically curved panels are a structural element that conceptually is limited 
by flat plates on one hand, and by full revolution shells on the other, there is a void in European 
standards in what concerns rules defining equivalent geometric imperfections.  

2 NUMERICAL MODEL AND PARAMETRIC STUDY 
2.1 General 
The generic curved panel numerical model is the same as the one used in previous papers by the 
authors ([8] and [9]) and it is characterised by its curvature parameter, given by expression (3), it is 
simply supported along all its edges (loaded edges constrained and unloaded edges unconstrained in 
y-direction, see Fig. 1). The mechanical properties of the steel are given in Table 1.  

tR
bZ

.

2

=   (3) 

where Z is the non-dimensional curvature parameter, 
b is the width of the curved panel,  
R is the radius of curvature of the curved panel,   
t is the curved panel’s thickness.   
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Fig. 1. Cylindrically curved panel [9] 



 

  

Table 1. Mechanical properties of the steel (according to EN10025 [10]) 

Young’s module, E Poisson’s coefficient, ν Yield stress, fy Ultimate stress, fu 
210 GPa 0.3 t≤16 mm, 355 MPa 3<t≤80 mm, 470 MPa 

 

2.2 Definition of the pattern of the equivalent geometric imperfections 
As it will be seen at the definition of the parametric study, the patterns for the geometric patterns 
are based on the ten first buckling modes. This allows setting a comprehensive range for the initial 
shape of the geometric imperfections. As an example, these buckling modes are shown in Fig. 2 for 
a cylindrically panel with a curvature parameter equal to 30 and aspect ratio (α=a/b) equal to 1.6.  

     
Buckling mode 1 Buckling mode 2 Buckling mode 3 Buckling mode 4 Buckling mode 5 

     
Buckling mode 6 Buckling mode 7 Buckling mode 8 Buckling mode 9 Buckling mode 10 

Fig. 2. Buckling modes for a cylindrically curved panel with Z=30 and α=1.6  

2.3 Parametric study 
A total of 1650 analyses were carried out. The range of all parameters intervening in this study is 
presented in Table 2. The parametric study comprises b/t ratios equal to 100, 150 and 200. These 
values are equivalent to non-dimensional slenderness parameters from 0.5 to approximately 2.5 (see 
[9]). This range is where imperfections play a more important role: for lower values of the 
non-dimensional slenderness parameter the ultimate strength is driven by plasticity and, for higher 
values of the non-dimensional slenderness parameters, the ultimate strength is driven by stability.  

Table 2. Range of the parametric study 

Width, b Thickness, t Curvature, Z Aspect ratio Imperfection shape and 
amplitude 

1000 mm 
10 mm 1, 10 to 100 

step=100 
1.0 to 5.0 
step=1.00 

10 buckling modes 
amp.=b/200 1500 mm 

2000 mm 
 

3 DISCUSSION OF RESULTS 

3.1 Influence of imperfections’ pattern on the postbuckling behaviour 
The imperfection’s pattern has a strong influence on the postbuckling path of cylindrically curved 
panes under pure compressive stresses. This statement is supported by Fig. 3. In fact, it is possible 
to see in Fig. 3 that for the case where geometric imperfections are based on buckling mode no.3, 
the postbuckling path is characterised by an unstable part, while for buckling mode no.2 and no.6 
the postbuckling path is stable until reaching the ultimate load.  
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Fig. 3. Different postbuckling paths for a cylindrically curved panel  

characterised by Z=30 and α=2.0 

Additionally, the pattern of initial geometric imperfections can dictate whether a cylindrically 
curved panel has an unstable postbuckling path highly sensitive to imperfections (resembling the 
postbuckling path of a shell of revolutions, Fig. 4a)) or a stable postbuckling path (resembling a 
postbuckling path of a plate, Fig. 4b)).  
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Fig. 4. Postbuckling path for a cylindrically curved panel characterised by:  

a) Z=30 and α=2.0; b) Z=10 and α=2.0 

3.2 Influence of imperfections’ pattern on the ultimate strength 
The first buckling mode is usually used as imperfection shape. This is due the belief that, when used 
as imperfection shape, it will always yield the lowest ultimate load factor (as the first buckling 
mode is associated to the lowest bifurcation load and, therefore, associated to lowest energy 
necessary to change the state of equilibrium of a given system). This may be true for some types of 
structures (e.g. unstiffened plated structures), but it may also be an unsafe approach for others.  
For example, Fig. 5 shows the results for three different geometric configurations where the first 
buckling mode do not yield the minimum ultimate load factor once.  
Additionally, Table 3 shows the detailed results from those curved panels in Fig. 5 and the 
differences between the ultimate load factors from panels with imperfections shape based on the 
first buckling mode and the remaining ones. For the curved panel characterised by Z=20 it is 
concluded that the first buckling mode returns the second highest value of the ultimate load factor.  
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Fig. 5. Ultimate load factor for three different geometric configurations  

of cylindrically curved panels 

Table 3. Comparison of results from models with imperfection shapes based on BM1  
and the remaining buckling modes 

 
Z=20; α=2.0; b/t=100 Z=50; α=4.0; b/t=150 Z=90; α=3.0; b/t=200 

ULF (ULFBM1-
ULFBMi)/ULFBM1  ULF (ULFBM1-

ULFBMi)/ULFBM1 
ULF (ULFBM1-

ULFBMi)/ULFBM1 
BM1 0.439 --- 0.339 --- 0.283 --- 
BM2 0.404 -8.0% 0.331 -2.4% 0.287 +1.4% 
BM3 0.422 -3.9% 0.387 +14.2% 0.333 +17.7% 
BM4 0.401 -8.7% 0.390 +15.0% 0.345 +21.9% 
BM5 0.425 -3.2% 0.303 -10.6% 0.309 +9.2% 
BM6 0.402 -8.4% 0.302 -10.9% 0.309 +9.2% 
BM7 0.440 +0.2% 0.333 -1.8% 0.454 +60.4% 
BM8 0.401 -8.7% 0.316 -6.8% 0.462 +63.3% 
BM9 0.398 -9.3% 0.384 +13.3% 0.273 -3.5% 
BM10 0.415 -5.5% 0.364 +7.4% 0.320 +13.1% 

 

3.3 Effect of curvature on the ultimate strength of long cylindrically curved panels 
Fig. 6 shows the evolution of the ultimate load factor with the curvature parameter.  
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Fig. 6. Minimum values of the ultimate load factor for models with b/t=100 and 150 



 

  

It is seen that, for long cylindrically curved panels, curvature has an unexpected effect: curved 
panels with curvature parameters around 30 have the lowest resistance. This means that, contrary to 
the conclusions for short cylindrically curved panels (see [9]), long curved panels are highly 
sensitive to initial geometric imperfections, especially for curvature parameters around 30.  

4 CONCLUSIONS 
In conclusion, this paper presents a preliminary study on the influence of the pattern of geometric 
imperfections on the ultimate behaviour of cylindrically curved panels. Namely, it was seen that, in 
what concerns geometric imperfections based on eigenmode shapes, these have a strong influence 
in both the postbuckling and ultimate strength of cylindrically curved panels.  
The question of which is the worst shape for geometric imperfections (i.e. the one that results in the 
lowest value of the ultimate load factor for a given geometry) is still not answered. Nevertheless, 
the authors are currently involved in a study where it expected that this and other questions (like 
what is the effect of the geometric amplitude on the ultimate strength) will be answered.   
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